If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+14x-168=0
a = 5; b = 14; c = -168;
Δ = b2-4ac
Δ = 142-4·5·(-168)
Δ = 3556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3556}=\sqrt{4*889}=\sqrt{4}*\sqrt{889}=2\sqrt{889}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{889}}{2*5}=\frac{-14-2\sqrt{889}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{889}}{2*5}=\frac{-14+2\sqrt{889}}{10} $
| x/1.4=7 | | y=3/2*4 | | 203+6x=180 | | 2x+119+75=180 | | 2x+4=10x-4=3x | | 2x+3=5/2 | | c+132=877 | | 4y-27=4 | | 58+53+52+57+x=55 | | 55=x+58+53+52+57 | | (4x+3)(2x-4)=0 | | x3-18.92x-241.59=0 | | x2-2x-25=0 | | -1.3y+0.3y+y=-2.4 | | 8x+40-20x-1=40-5x+15 | | 9x-18x+49x=-9-50 | | 4x-3.6=12 | | 8x-8x-18x=14+44 | | 18x+18x+22x=-18-4 | | 3x+80=5x-20=4x-10 | | 2x-3+6x+21=0 | | X=x+10-2x-25 | | (7/8)x=56 | | (7/8)p=56 | | (2/5)t=20 | | -56=-14y | | y-20=-50 | | 26/x=21 | | 1=y/1 | | 12=y-(-14) | | 4.8y=-38.4 | | F(-3)=4-5(x) |